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Abstract 

Classifying a set of decision making units (DMUs) is a useful tool which helps the manager to group 

and name DMUs on the basis of something that they have in common. By doing this manager can 

understand certain qualities and features which they shares as a class. Classifying is also a way of 

understanding differences between things. Discriminate Analysis (DA) deals with classifying a DMU 

into one of several groups and Data envelopment analysis (DEA) is a management science technique 

for measuring the efficiency score of a set of DMUs. Some approaches have been developed to utilize 

DEA into DA formulation which are known as DEA-DA methods. In this study, we first overview a 

two-stage DEA-DA approach and then we show its drawback. Next, we improve the model and 

illustrate the potential uses with applications to the largest private bank in Iran. 
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1. Introduction  

 

Data envelopment Analysis (DEA) is a well-known mathematical quantitative approach for 

measuring the performance of a set of similar units (DMUs). Since the pioneering work of Charnes et 

al. (1978), DEA has demonstrated to be an effective technique for measuring the relative efficiency of 

a set of homogenous DMUs. In managerial applications, DMUs may include banks, department stores 

and supermarkets, and extend to car makers, hospitals, schools, public libraries and so forth. In 

engineering, DMUs may take such forms as airplanes or their components such as jet engines. The 

first two well-known DEA model are called CCR (Charnes, Cooper, and Rhodes) and BCC (Banker, 

Charnes and Cooper). The CCR model is formulated for constant returns to scale (CRS) situation, 

however Banker et al (1984) extended it to variable returns to scale (VRS) situation. There are various 

types of DEA models such as, additive, Slacks-Based Measure (SBM) and Russell Measure (RM). 

More specifically, DEA models usually are looking for an efficient frontier that envelops all DMUs. 

These models are able to classify all DMUs on the efficient frontier as efficient and other DMUs that 

are enveloped by the efficient frontier as inefficient. Although DEA models can categorize DMUs into 

two main groups (efficient and inefficient), they fail to classify units. In categorization process, we are 

looking for dividing DMUs into groups with the know criteria (perceived similarities). For example, 

DEA can categorize DMUs based on their efficiency status. Meanwhile, classification process assigns 

each DMU to one and only one class within a system of mutually exclusive and nonoverlapping 

classes with unknown criteria. 

The classification problem is an important topic in decision making. For example, financial 

analysts typically evaluate the financial health of firms, and they have to classify the firms 

accordingly. Discriminate Analysis (DA) uses a group of DMUs, whose memberships are already 

identified, are used for the measurement of a set of estimates (weights) by minimizing incorrect group 

classification. The estimations also can be used for predicting group membership of a newly sampled 

data. The method may be either a statistical technique or a goal programming (GP) technique for 

classifying an observed data set into one of several groups. Sueyoshi (2006) categorized DA 

approaches into eight different groups: standard mixed integer programming (MIP), two-stage MIP, 

logit, probit, Fisher’s linear DA, Smith’s quadratic DA, neural network (NN) and decision tree (DT). 
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In view of GP, there are seven types of DA approaches that are called GP-based DA methods:  

MMaD (Minimize Maximum Deviation), MMiD (Maximize Minimum Deviation), MSID (Minimize 

Sum of Interior Deviations) and MSD (Minimize Sum of Deviations) proposed by Freed and Glover 

(1981, 1986);  MMO (Minimize Misclassified Observations) by Banks and Abad (1991), hybrid model 

(minimize external deviations and maximize internal deviations) by Glover (1990) and ratio model 

(maximize the ratio of internal to external deviations) by Retzlaff-Roberts (1996a, b). The 

computational practicality of MSD makes this approach as the most frequently applied among the 

others.  However, the main disadvantage of these approaches is that they are parametric.  

Sueyoshi (1999) incorporated DEA and DA approaches and proposed a non-parametric DEA-

DA classification method which is an interesting classification approach because it maintains its 

discriminant capabilities by incorporating the non-parametric feature of DEA into DA. In the next 

section, we represent the DEA-DA approach and illustrate it with a numerical example. 

 

2. DEA Methodology 

 

DEA is a nonparametric approach for measuring the efficiency score of a set of homogeneous 

DMUs. Suppose there are n DMUs ( DMU 1, ,j j n ) and let input and output data for DMUj be   

1( , , )j j mjx xx  and 1(y , , y )j j sjy , respectively. Let ( 1,..., )iv i m  and ( 1,..., )ru r s  be 

the weights of ith input and rth output, respectively. Mathematically, the efficiency score of DMU j  can 

be calculated as  
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Charnes et al. (1978) proposed the following well-known CCR model to measure the 

efficiency score of the under evaluation unit, DMUo ( {1, , }o n ): 
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This model must be solved one for each DMUj to be evaluated. Notice that in this model 
* 0iv   

indicates that ith input is removed from the efficiency evaluation calculations and might make 

inaccurate result. In this model, DMUo is CCR-efficient if and only if 
* 1e   and there exists at least 

one optimal solution 
* *( , )u v  with 

* 0u  and 
* 0v . To obtain the positive weights, Carnes et al. 

(1979) revised their model as follows: 
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where   is a non-Archimedean infinitesimal number and must be determined correctly. Amin and 

Toloo (2004) designed a polynomial time algorithm to find a suitable value for epsilon. In the revised 

model, DMUo is CCR-efficient if and only if 
* 1e  . As will be seen subsequently, zero weights in 

DEA-DA approach might lead to incorrect result.  

 

3. DEA-DA approach 

 

Suppose there are n DMUs ( DMU 1, ,j j n ) and each DMUj has k independent (inputs 

and outputs) factors 1( , , ) k

j j kjz z R z . All DMUs can be classified into either Group1 (G1) or 

Group 2 (G2). We also suppose 1 1G n  and 2 2G n  where 1 2n n n  . We are looking for a 

hyperplane  :H d z αz such that  
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where 
kRα is the normal or the gradient to the hyperplane, d is a threshold value and 

   : , :H d H d    z αz z αz  are half-spaces. However, the mentioned conditions can be 

rewritten as bellow 
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If there is such hyperplane, then all DMUs in G1 and G2 are classified correctly. Otherwise, the 

classification is incorrect and such situation is called an ‘overlap’. To deal with overlap situation, we 

have to find some 1, jj G H  z  and let 2j G  and/or find some 2 , jj G H  z and let 1j G

. Apparently, with these changes all DMUs are classified correctly. 

Sueyoshi (1999) suggested a two stages DEA-DA approach for predicting group membership. 

Suppose DMUs are classified into two groups: G1 and G2. The first stage verifies whether or not all 

DMUs are correctly classified whereas the second stage deals with overlap situation.  

 

3.1 First stage 

 

The following model is proposed to classify and identify the overlap: 
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  (3) 

 

where   is a parameter for imposing a gap between two groups. Slacks, 1 js  and 2 js  represent 

deviations for G1 and G2, respectively. More precisely, 1 js  indicates how much 
1

k

i iji
z


αz  is 

separated from the threshold score d and similarly 2 js  shows how much 
1

k

i iji
z


βz  is separated 

from d  . Hence, this model minimizes two types of incorrect classification: DMUs in G1 are 

classified in G2 and DMUs in G2 are classified in G1. The two normalization constraints 

1 1
1, 1

k k

i ii i
 

 
    are added to avoid a trivial solution 0i i   .  

Note that in this model we are looking for the following two hyperplanes 
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such that 1 1 2 2, & ,j jj G H j G H      z z .  

Suppose this model is solved and the optimal solution is at hand. The overlap of DMUo can 

be identified by the following criteria: 

1. If 
* * 0o d α z  and 

* * 0o d β z , then no overlap exists and  1o Gz . 

2. If 
* * 0o d α z and 

* * 0o d β z , then no overlap exists and  2o Gz . 

3. If (
* * * *0 & 0o od d   α z β z  or 

* * * *0 & 0o od d   α z β z ), then there is an 

overlap and 1 2o G Gz . 

Since the criteria is based on the sign of 
* *

o dα z  and 
* *

o dβ z , they are called α-

estimate and β-estimate, respectively.  

We utilize the following figure to illustrate this approach. Consider we have 20 DMUs with 

2 independent factors and also the DM classified these units into two groups. Figure 1 exhibits a 

situation that no overlap exists. 
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Figure 1: No overlap exist 

 
Source: author’s calculations. 

 

As can be seen in Figure 1, the correct group classification can be determined by model (3) 

however, this model fails to deal with overlap situation. In this case, we must resort to the second 

stage. 

 

3.2 Second stage 

 

Sueyoshi (1999) formulated the following model to deal with overlap:  
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Suppose this model is solved. As Sueyoshi (1999) explained, with the following conditions 

all units in 1 2G G can be classified into either 1G  or 2G : 

If 
* *

1 2

1

,
k

i ij

i

z d j G G


  , then 1j G ; otherwise 2j G . 

The following figure illustrates this situation 

 

Figure 2: Overlap exist 
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Source: author’s calculations 

 

4. Case study 

 

This section classifies a real data set of the largest private bank in Iran that are previously 

utilized in Toloo (2013). The bank has approximately 3150 branches in different cities in Iran with 

127 branches in one of the northern provinces, Gilan. Table 1 exhibits the data set involving 20 

branches of the capital of Gilan. Based on DM, there are six important factors for classification: 

employees, assets, cost, the number of transactions, deposits and loans.  

 

Table 1: The data set and given group 

DMUs 
Factors 

Group 
Employees Assets Costs Transactions Deposits Loans 

1 11 1753 10020 5214 72149 57537 G1 

2 17 2604 11440 5343 89781 51114 G1 

3 7 1155 8427 5145 42654 52485 G2 

4 12 1899 11816 3249 97812 67298 G1 

5 14 2215 12426 6706 77031 43487 G1 

6 14 2357 9907 6259 75923 41442 G1 

7 9 1370 10365 3652 47763 43262 G2 

8 5 829 5283 3913 45732 14237 G2 

9 6 985 11061 3566 55222 41062 G2 

10 6 1023 5856 4559 53323 37418 G2 

11 8 1311 8745 4441 69734 57883 G2 

12 9 1536 7326 5031 49153 47139 G2 

13 8 1367 8326 5053 92365 55543 G1 

14 7 1193 6525 4762 64235 22347 G2 

15 9 1359 8158 6876 89104 45717 G1 

16 7 1111 11135 4307 42012 73925 G2 
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17 7 1182 6920 5331 69360 27246 G2 

18 7 1069 5864 4004 51438 26531 G2 

19 6 992 5039 2342 39948 20223 G2 

20 7 1180 8378 4238 154284 43928 G2 

Source: Toloo (2013) 

 

We solve the model (3) for that data set in Table (1) and the following optimal solution 

obtains: 

 

*

* * *

1 5 2

= 1536

0.979, 0.021, 1

d

    
  

Table (2) shows α-estimate and β-estimate related to this optimal solution. As it can be 

extracted from this table, there are three overlaps for DMU13, DMU15 and DMU20. The optimal 

solution of the model (2) give us  
* * * * *

3 4 5 6= 10430.524, 0.1133, 0.782, 0.208, 0.637d        . 

 

Table 2: Two-stage DEA-DA in case of overlap 

DMUs 
Stage 1 Stage 2 

α-estimate β-estimate Prediction α-estimate Prediction 

1    0.000   216.990 G1  G1 

2  378.617  1067.990 G1  G1 

3 -627.445  -381.010 G2  G2 

4  543.499   362.990 G1  G1 

5  106.143   678.990 G1  G1 

6   82.720   820.990 G1  G1 

7 -517.482  -166.010 G2  G2 

8 -564.333  -707.010 G2  G2 

9 -362.734  -551.010 G2  G2 

10 -402.879  -513.010 G2  G2 

11  -53.990  -225.010 G2  G2 

12 -488.097    -0.010 G2  G2 

13  424.433  -169.010 Overlap 84.217 G1 

14 -171.219  -343.010 G2  G2 

15  356.474  -177.010 Overlap 794.773 G1 

16 -641.017  -425.010 G2  G2 

17  -62.875  -354.010 G2  G2 

18 -441.750  -467.010 G2  G2 
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19 -685.629  -544.010 G2  G2 

20 1732.433  -356.010 Overlap -0.010 G2 

Source: author’s calculations 

 

It seems the proposed approach by Sueyoshi (1999) classifies the data of bank, as follows: 

G1: DMU1, DMU2, DMU4, DMU5, DMU6, DUM13, DMU15. 

G2: DMU3, DMU7-DMU12, DMU14, DMU17-DMU20. 

Now, let us double-check the obtained result. The last column of table (1), given group, is 

exactly the same as the last column of Table (2), prediction by DEA-DA approach, which illustrates a 

drawback in this approach: based on the obtained result of the stage 1 model, there is overlap in the 

data set whereas the group of any observation is not changed in the stage 2 did not change. If the status 

of all units be the same, then definitely the overlap is still exists.  Obviously, this is a drawback and in 

the next section, we capture it and revise the DEA-DA approach.  

 

5. The revised DEA-DA approach 

 

It should be noticed that from the optimal solution of stage 1 it is evident that to calculate α-

estimates the factors assets, cost, number of transactions and loans are ignored and also to evaluate β-

estimates only assets is considered. Also in stage two, employee and assets are removed from 

calculations. As it was mentioned before, similar to DEA models, in DEA-DA approach all factors 

have to be considered and hence the value of α and β variables must be positive. Toward this end, we 

propose the following two-stage models: 
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where 
1

0
k

   is a positive number to forestall weights from being zero.  

The following table shows the new results that obtained from our new proposed model with 

0.01  . 

 

Table 3: The revised Two-stage DEA-DA in case of overlap 

DMUs 
Stage 1 Stage 2 

α-estimate β-estimate Prediction α-estimate Prediction 

1    12.739    -114.700 Overlap  376.000 G1 
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2   585.765     821.390 G1  G1 

3 -1080.654   -1044.930 G2  G2 

4   995.542     376.560 G1  G1 

5    86.878     271.530 G1  G1 

6     0.000     345.240 G1  G1 

7  -988.347    -877.350 G2  G2 

8 -1405.919   -1750.110 G2  G2 

9  -753.792   -1184.440 G2  G2 

10  -897.423   -1245.890 G2  G2 

11   -94.712    -575.800 G2  G2 

12  -916.609    -683.580 G2  G2 

13   664.375    -317.760 Overlap 1627.000 G1 

14  -660.696   -1117.250 G2  G2 

15   471.117    -439.670 Overlap 1585.250 G1 

16  -870.121    -860.050 G2  G2 

17  -425.538   -1017.820 G2  G2 

18 -1075.346   -1335.370 G2  G2 

19 -1561.004   -1611.380 G2  G2 

20  2671.892      -0.010 Overlap 5332.250 G1 

Source: author’s calculations 

 

As it can be seen from Table (3), DMU20 must be classified in G1. If one puts DMU20 into G1 

and resolve the improved stage 1 model, it can be found that there is not overlap in the data set (as we 

expected).   

Now, suppose we wish to predict the group membership of a new branch with the following 

data set: 

 

Employee: 10 

Assets: 1277 

Cost: 11701 

The number of transactions: 3833 

Deposits: 98910 

Loans: 38438 

 

The DM can predict the group membership of the new branch by the optimal solution of the 

improved approach. The α-estimate for the new branch is equal to 741.42 and subsequently the new 

branch belongs to G1. 

 

6. Conclusion 

 

 In this paper, a mathematical approach for classifying DMUs in DEA-DA was considered. 

This approach involves two stages for classification and predict the membership: stage 1 identifies the 
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overlap (if exists) and stage 2 deals with overlap situation. We illustrated that zero weighs in these 

models might lead to an incorrect result and to tackle this issue we put a positive lower bound to the 

weights. To show the applicability and accuracy of the improved approach, we used 20 branches of 

Saderat Bank, whose memberships are determined by the bank, and measured a set of normalized 

weights by minimizing incorrect group classification. We also utilized the estimated weights to predict 

group membership of a new branch (DMU21). 
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